Data science work sharing hub.

Neptune brings organization and collaboration to data science projects.  Everything is secured, backed-up in an organized knowledge repository.

No credit card required. Takes 5 minutes to get started.

#1. PRODUCT MANIFESTO

Adaptive

Fits into your workflow,
not the other way around.

Beautiful

User friendly everywhere,
from API to UI.

Secure

Keeps your work safeguarded,
no matter what.

#2. HOW IT WORKS

track

Neptune tracks your work with virtually no interference to the way you like to do it. You focus on ideas and experiments, Neptune will take care of the rest.

- Metrics
- Hyperparameters
- Data versions
- Model files
- Images
- Source code

# Track your data science work with Neptune

import neptune

neptune.init()

neptune.send_metric(’auc’, score)

neptune.send_image(‘model_diagnostics’, ’roc_auc.png’)

neptune.send_artifact(’model_weights.h5’)

neptune.set_property(‘data_version’, sha1(data_train))

# Host MLflow or TensorBoard runs on Neptune

neptune@ubuntu:~$ neptune tensorboard path/to/logdir

neptune@ubuntu:~$ neptune mlflow path/to/project

Neptune-track
Organization in data science projects
Organize

Neptune organizes your data science projects automatically, transforming them into a knowledge repository. Every byte of knowledge is indexed and searchable.

- Unified experiments dashboard
- Experiment comparison
- Notebooks versioning
- Project docs
- User management
- Custom views
- Queryable API
Collaborate
Neptune enables your team to work together, not just next to each other. You can collaborate on new ideas, give feedback, spot bugs and gain insights quickly, discuss one another’s code and comment on learning curves.
- Project discussions
- Shareable links
- Project contributor invites
Collaboration in data science projects.

#3. TESTIMONIALS

Perfect for teams, loved by individuals

7 500 000

EXPERIMENTS TRACKED

3 500

PROJECTS HANDLED

20 430 000

CHANNELS DEFINED

NewYorker is benefiting from keeping track of machine learning experiments.

New Yorker is a leading German clothing retailer managing over 1000 branches spread across 40 countries. Our data science team focuses on price forecasting and object detection. Neptune allows us to keep everything we want to know about experiments in one centralized place where our team can easily access it. What we really like about Neptune is that it easily hooks into multiple frameworks. Keeping track of machine learning experiments systematically over time and visualising clearly the output adds a lot of value for us.

Ronert Obst
Head of Data Science
Symmetrical is speeding up the machine learning model training process thank to the process organization.

At Symmetrical Labs we develop a marketplace for financial products by connecting consumers to the right products in real-time. We discovered neptune.ml to be an invaluable tool for running machine learning experiments in an extremely fast manner. Even more importantly, we learned that by using it we can significantly shorten the amount of time we spend on setting up and running experiments. We have incorporated Neptune in our pipeline for developing, testing and fine-tuning algorithms for selecting the financial products tailored to our clients, which is a big win for us.

Tomasz Puton, PhD
Lead Engineer, symmetrical.ai
Collaboration is enabling deepsense.ai to build top quality machine learning models for their clients.

Here at Deepsense.ai we are providing machine and deep learning solutions and consultancy for market leaders such as BCG, IBM, Juniper, EY, nielsen, nVidia, and Loreal. Using Neptune, we are able to cooperate more closely with our customers and eliminate most of the problems related to project communication. We limited the number of meetings to the ones that are really necessary to make strategic decisions, since clients have real time access to what we do and we can now collaborate on a regular basis. When everything is tracked and organized in the one knowledge centre we don’t need to create much additional documentation for our clients. With Neptune we are able to deliver our projects faster and we have optimized time spent onboarding new data scientists to a project.

Robert Bogucki
Chief Science Officer, deepsense.ai
An Individual account allows for collaboration of multiple projects in a single view.

As a graduate student and research enthusiast, I'm working with both classical machine learning problems like classification or regression and deep learning, especially with recurrent neural networks. I was trying to handle a bunch of different projects, they were all scattered among different platforms like Azure or Google Colab. Each of those platforms has a feature that I like - but Neptune puts it all together with everything in one place which makes my projects way easier to manage. The collaboration part of Neptune is also really important for me. One of the things that I'm always looking for when choosing a machine learning framework or environment is the ability to do collaborative work.

Lucas Farias
Graduate Student and Research Intern at IBM

#4. PRICING

Plans that suit every data scientist

Individual

Free

unlimited projects
up to 3 collaborators per private projects

  • Unlimited private project
  • Unlimited public projects
  • Up to 3 collaborators per project
  • 5 000 experiments per project
  • 5 GB of storage per project

Kaggle Grandmaster? Send us your Kaggle profile and let us increase your Individual account limits. Contact us

Team

1 project Free

$600 for each 3 projects / monthly
unlimited members
  • Unlimited team members
  • Unlimited project collaborators
  • Project access control
  • User management and billing
  • 50 000 experiments per project
  • 50 GB of storage per project
More than 10 projects? Contact sales
Questions? Contact us

Free for educational organizations or non-profit research.  

Would you like to deploy Neptune on your cloud or own infrastructure?

#5. DATA SECURITY

User Data at Rest

The files you send to Neptune are stored on Google Persistent Disks. The rest of your data is stored in Google Cloud SQL. In both cases, your data is encrypted at rest.

User Data in Transit

We encrypt any traffic that travels over an open network, including all data transfers.

Payment Methods Security

Neptune uses Stripe to handle credit card transactions. Stripe is certified to PCI Service Provider Level 1. It’s the most stringent level of certification available in the payments industry.
Security at Neptune
Take advantage of 
enabled collaboration.
seamless tracking.
organized work.
 Start today!